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Abstract. For pairs of particles extracted from a symmetric state of N two-level systems, the two-particle
density matrix is expressed in terms of expectation values of collective spin operators S for the large
system. Results are presented for experimentally relevant examples of pure states: Dicke states |S,M〉,
spin coherent, and spin squeezed states, where only the symmetric subspace, S = N/2 is populated, and
for thermally entangled mixed states populating also lower S values. The entanglement of the extracted
pair is then quantified by a calculation of the concurrence, which provides directly the entanglement of
formation of the pair.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities,
GHZ states, etc.) – 03.67.Lx Quantum computation – 75.10.Jm Quantized spin models

1 Introduction

Various proposals exist for the preparation of multi-
particle entangled states, and a number of these states
have been pointed out to be particularly easy to prepare
and to have special and useful properties [1–11]. Since en-
tanglement is defined as a property of the whole ensemble
of particles, it is not immediately clear whether a sub-
ensemble of particles, drawn at random from the original
ensemble will also be in an entangled state, or whether the
trace over some particles will destroy the quantum correla-
tions in the system. Substantial efforts have been made to
quantify multi-particle entanglement and to explore how
multi-particle entanglement manifests itself under differ-
ent partitionings of the system, and to which extent dif-
ferent kinds of entanglement may be converted into each
other [12–15]. In this paper we consider the simpler ques-
tion whether a random pair of particles, extracted from a
symmetric state of N two-level systems will be in an en-
tangled state or not, where by symmetric, we assume sym-
metry under any permutation of the particles. We present
a method to express the two-particle density matrix in
terms of expectation values of collective variables of the
large ensemble, and we determine the concurrence [16,17]
of the pair for a number of physical examples. Entangled
states constitute a valuable resource in quantum infor-
mation processing [18], and the transfer of entanglement
between few qubits and the quasi-continuous variables by
which we describe many-particle systems, may become an
important ingredient in, e.g., quantum data-storage and
inter-species teleportation.

The paper is organized as follows. In Section 2, we
present the concurrence, introduced by Wootters [16,17],

a e-mail: moelmer@ifa.au.dk

who demonstrated its one-to-one correspondence with the
entanglement of formation of a pair of qubits. In Section 3,
we show how the density matrix of a pair of qubits can be
expressed in terms of expectation values of collective spin
operators on the multi-qubit state. In Section 4, we ana-
lyze three examples of pure states of the N particles: spin
coherent states, Dicke states, and spin squeezed states.
In Section 5, we consider an example of a mixed state
with thermal entanglement [19–23], and we show examples
where the pairwise entanglement depends on the temper-
ature of the system. Finally in Section 6, we assume two
separate ensembles in an Einstein-Podolsky-Rosen state of
correlated angular momentum components, and we show
that a single pair with an atom from each ensemble will
be in an entangled state.

2 Two-particle density matrices
and entanglement

It is easy to check if a pure state of two quantum sys-
tems is an entangled state or not, by simply observing the
eigenvalues ri of the reduced density matrix of either sys-
tem. It is also possible to quantity the amount or degree of
entanglement of the state [24], E = −

∑
i ri log2 ri, which

presents the asymptotic ratio between n and m, where n
is the number of pairs in the desired state, synthesized
from m pairs of maximally entangled states.

For a mixed state with density matrix ρ12, a simi-
lar measure can be defined as the minimum value of the
weighted average of E over wave functions by which the
two-particle density matrix can be written as a weighted
sum. It is necessary to search for the minimum, since ρ12

can be written in many ways as a weighted sum of pure
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state projections. In the general case, this is a highly non-
trivial task, as is the determination whether the state is
entangled at all. For two qubits, however, entanglement is
equivalent with the non-positivity of the partially trans-
posed density matrix [25], and the entanglement of for-
mation can be obtained as a simple analytical expres-
sion [16,17]

E = h

(
1 +
√

1− C2

2

)
(1)

where h(x) = −x log2 x − (1 − x) log2(1 − x), and where
the concurrence, C, is defined as

C = max {0, λ1 − λ2 − λ3 − λ4} , (2)

where the quantities λi are the square roots of the eigen-
values of the matrix product

%12 = ρ12(σ1y ⊗ σ2y)ρ∗12(σ1y ⊗ σ2y) (3)

in descending order. In (3) ρ∗12 denotes complex conjuga-
tion of ρ12, and σiy are Pauli matrices for the two-level
systems. The eigenvalues of %12 are real and non-negative
even though %12 is not necessarily Hermitian, and the val-
ues of the concurrence range from zero for an unentangled
state to unity for a maximally entangled state.

3 Density matrix for a pair of qubits
from a multi-qubit state

A state of two qubits which is symmetric under exchange
of the systems has the density matrix

ρ12 =

v+ x∗+ x∗+ u∗

x+ w y x∗−
x+ y w x∗−
u x− x− v−

 (4)

where the matrix elements in the basis
{|00〉, |01〉, |10〉, |11〉} can be represented by expecta-
tion values of Pauli spin matrices of the two systems

v± =
1
4

(1± 2〈σ1z〉+ 〈σ1zσ2z〉) ,

x± =
1
2

(〈σ1+〉 ± 〈σ1+σ2z〉),

w =
1
4

(1− 〈σ1zσ2z〉) ,

y =
1
4

(〈σ1xσ2x〉+ 〈σ1yσ2y〉) ,

u =
1
4

(〈σ1xσ2x〉 − 〈σ1yσ2y〉+ i2〈σ1xσ2y〉)· (5)

We now consider such a state of two qubits which have
been extracted from a symmetric multi-qubit states. If
only symmetric pure states are considered, we can describe
the state of the N -qubit system in terms of the orthonor-
mal basis |S,M〉 (M = −S,−S + 1, ..., S) with S = N/2.

The states |S,M〉 are the usual symmetric Dicke state [26],
i.e., eigenstates of the collective spin operators S2 and Sz ,
defined as

Sα =
1
2

N∑
i=1

σiα, α = x, y, z. (6)

For later use it is convenient to define the number operator
N = Sz +N/2 and number states as

|n〉N ≡ |N/2,−N/2 + n〉N ,
N|n〉N = n|n〉N . (7)

The eigenvalue n of the number operator N is the number
of qubits in the state |0〉. For example, the states |0〉N
and |1〉N are explicitly written as

|0〉N = |111...1〉, (8)

|1〉N =
1√
N

(|011...1〉+ |101..1〉

+...+ |111...0〉). (9)

|1〉N is also called an N -qubit W state [1,20].
Due to the symmetry of the multi-qubit state under

exchange of particles we have

〈σ1α〉 =
2〈Sα〉
N

,

〈σ1+〉 =
〈S+〉
N

,

〈σ1ασ2α〉 =
4〈S2

α〉 −N
N(N − 1)

,

〈σ1xσ2y〉 =
2〈[Sx, Sy]+〉
N(N − 1)

,

〈σ1+σ2z〉 =
〈[S+, Sz]+〉
N(N − 1)

, (10)

where [A,B]+ = AB +BA is the anticommutator for op-
erators A and B.

From equations (5, 10) we may thus express the density
matrix elements of ρ12 in terms of the expectation values
of the collective operators,

v± =
N2 − 2N + 4〈S2

z 〉 ± 4〈Sz〉(N − 1)
4N(N − 1)

,

x± =
(N − 1)〈S+〉 ± 〈[S+, Sz]+〉

2N(N − 1)
,

w = y =
N2 − 4〈S2

z 〉
4N(N − 1)

,

u =
〈S2
x − S2

y〉+ i〈[Sx, Sy]+〉
N(N − 1)

=
〈S2

+〉
N(N − 1)

· (11)

In these expressions we have used the identity 〈S2
x〉+〈S2

y〉+
〈S2
z 〉 = N

2 (N2 + 1) valid in the symmetric state space of
the particles.
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4 Three examples

4.1 Spin coherent states

The spin coherent state [27] is obtained by a rotation of the
spin state |S,M = S〉, which in turn is the product state of
allN particles in the |0〉 state. Hence it is a separable state.
It is still interesting to go through the above procedure
and to insert the explicit expression of the spin coherent
state [27],

|η〉 = (1 + |η|2)−N/2
N∑
n=0

(
N
n

)1/2

ηn|n〉N , (12)

where η is chosen real in the following. By a straightfor-
ward calculation from equations (11, 12), we find

ρ12 =
1

(1 + η2)2

η4 η3 η3 η2

η3 η2 η2 η
η3 η2 η2 η
η2 η η 1

 (13)

which is in agreement with our observation that the two-
particle state is really a product state of two rotated
spin- 1

2 particles in the states (η|0〉 + |1〉)/
√

1 + η2. The
matrix product %12 is found to be a 4×4 matrix of zero’s,
revealing the role of the σy Pauli matrices in (2): ρ12 is
the projection operator on spin states with a definite di-
rection in the xz-plane, the application of σy is equivalent
to a 180◦ rotation in the xz-plane, and %12 is therefore
the vanishing product of projection operators on two or-
thogonal subspaces. Naturally, the concurrence vanishes
in this case, C = 0. In other words, there is no pairwise
entanglement in the SCS.

4.2 Dicke state |N/2,M〉

The Dicke states, defined as effective number states above,
are states with a definite number of particles occupying
the internal states |0〉 and |1〉. Such states may in princi-
ple be prepared in an atomic physics experiment by Quan-
tum Non-Demolition detection of the atomic populations
by phase contrast imaging of the atomic sample [2,3]. By
rotation of all spins, a separable spin coherent state is pre-
pared with a binomial distribution on the various Dicke
states, cf. equation (12), and experiments have already
demonstrated a factor 3 reduction in the variance of the
populations obtained by such a detection [4].

From equations (4, 11), it is easy to see that the re-
duced density matrix ρ12 is given by

ρ12 =

v+ 0 0 0
0 y y 0
0 y y 0
0 0 0 v−

 (14)

with matrix elements

v± =
(N ± 2M)(N − 2± 2M)

4N(N − 1)
,

y =
N2 − 4M2

4N(N − 1)
· (15)
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Fig. 1. The concurrence in the Dicke state for different number
N . N = 15 (open circles), N = 25 (crosses), and N = 30 (open
square).

The corresponding concurrence of a simple density matrix
of the form (14) is given by [28]

C = 2 max{0, y −√v+v−}, (16)

where we have used the fact 2y + v+ + v− = 1. Now sub-
stituting equation (15) into (16), we explicitly obtain

C =
1

2N(N − 1)

{
N2 − 4M2

−
√

(N2 − 4M2)[(N − 2)2 − 4M2]
}
· (17)

The values of C for different N and M are illustrated in
Figure 1. For any Dicke state except the ones with maxi-
mum |M |, if one extracts two particles, they will be in an
entangled state.

The variation of M around M = 0 is small for an
initial binomial distribution with this mean value, and the
concurrence will be very close to the exact result, C =
1/(N − 1) for M = 0, irrespective of the outcome of a
QND measurement of M .

The Dicke states |N/2,M = ±(N/2− 1)〉 have a con-
currence of C = 2/N . These states are identical with the
W state (see Eq. (9)), which are known to be the symmet-
ric states with the highest possible concurrence [29].

4.3 Kitagawa-Ueda state

In 1993, Kitagawa and Ueda proposed a nonlinear Hamil-
tonian χS2

x in order to generate spin squeezed states [5].
This effective Hamiltonian may be realized in ion traps [6],
where it was already implemented in order to produce
multi-particle entangled states (of four particles) [7], and
it may be implemented in two-component Bose-Einstein
condensates as a direct consequence of the collisional in-
teractions between the particles [8], see also [9].

When the Hamiltonian H = χS2
x is applied to the

many-particle system, which has been prepared in the
product state |0〉N = |111, ..., 1〉, the wave function at
time t is obtained as

|Ψ(t)〉 = e−iχtS2
x |0〉N . (18)
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Fig. 2. The concurrence as a function of µ for different number
N . N = 3 (solid line), N = 4 (dashed line), N = 5 (open
circles), N = 6 (open diamonds), and N = 7 (crosses).

Using the results obtained in [5] the following expectation
values are obtained (µ = 2χt)

〈Sx〉 = 〈Sy〉 = 0,

〈Sz〉 = −N
2

cosN−1
(µ

2

)
〈S2
x〉 = N/4

〈S2
y〉 =

1
8
(
N2 +N −N(N − 1) cosN−2 µ

)
〈S2
z 〉 =

1
8
(
N2 +N +N(N − 1) cosN−2 µ

)
〈[S+, Sz]+〉 = 0

〈[Sx, Sy]+〉 =
1
2
N(N − 1) cosN−2 µ

2
sin

µ

2
· (19)

We are now able to determine the two-particle density
matrix, which is on the form

ρ12 =

v+ 0 0 u∗
0 y y 0
0 y y 0
u 0 0 v−

 (20)

with matrix elements given by equation (11). The com-
bination of equations (11, 19) gives explicitly the matrix
elements.

From equations (2, 3), the concurrence for the ma-
trix (20) is obtained as

C =

{
2 max(0, |u| − y), if 2y < √v+v− + |u|;
2 max(0, y −√v+v−), if 2y ≥ √v+v− + |u|.

(21)

The concurrence of the spin squeezed states is given by
analytical expressions in the argument µ = 2χt, which are
too lengthy to present here. In Figure 2 we present the
results numerically: if two atoms are extracted at random
from spin squeezed samples they will be in a mutually
entangled state. We observe that the concurrence is sym-
metric with respect to µ = π. At this special point of

µ = π the N -particle GHZ state is produced [6], which
has no entanglement in any subset of particles, hence the
concurrence vanishes at this point.

5 Mixed multiqubit states and thermal
entanglement

An interesting and novel type of thermal entanglement
was introduced and analyzed within the Heisenberg XXX
[19], XX [20], and XXZ [21] models as well as within
the Ising model in a magnetic field [22]. The state of
the system at thermal equilibrium is represented by the
density operator ρ(T ) = exp (−H/kT )/Z, where Z =
tr [exp (−H/kT )] is the partition function, H the system
Hamiltonian, k is Boltzmann’s constant which we hence-
forth take equal to unity, and T the temperature. As ρ(T )
represents a thermal state, the entanglement in the state
is called thermal entanglement [19]. Unlike in standard
statistical physics where all properties are obtained from
the partition function, determined by the eigenvalues of
the system, entanglement properties require in addition
knowledge of the eigenstates. The analytical results in the
previous studies on thermal entanglement are only avail-
able for two [19–22] and three qubits [23]. Here we consider
pairwise entanglement in the multiqubit systems.

5.1 Isotropic Heisenberg model

We consider the N -qubit isotropic Heisenberg Hamilto-
nian

HI =
J

4

N∑
i6=j

(
σxi σ

x
j + σyi σ

y
j + σzi σ

z
j

)
. (22)

The positive (negative) J corresponds to the antiferro-
magnetic (ferromagnetic) case. In this model all particles
interact with each other.

By using the collective spin operators, the Hamiltonian
is rewritten as

H = J
(
S2
x + S2

y + S2
z

)
= JS2 (23)

up to a trivial constant.
Unlike pure states, the symmetric multi-particle den-

sity matrix does not only populate the fully symmetric
Dicke states, and we have to determine the number of col-
lective spin-S states for each S. Write S as (N/2 − k),
we know that for k = 0, a single irreducible representa-
tion exists: the N + 1 fully symmetric Dicke states with
S = N/2. The number of irreducible representation with
S = N/2 − 1 is obtained by noting that their maximum

M value is also N/2− 1, and a total of
(
N
1

)
= N states

exist with precisely one particle in the |1〉 state. One of
these belong to the S = N/2 irreducible representation,
and the remaining N − 1 states must have S = N/2− 1.
This argument can now be repeated to obtain the number
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of states with S = N/2 − 2 and M = N/2 − 2, i.e., the
number of S = N/2 − 2 irreducible representation, etc.,
until all 2N states of the system have been accounted for.

The isotropic Hamiltonian only depends on S2, and
knowing the multiplicity of each value of this quantity we
write the partition function

Z =
N/2∑
k=0

Nk[2(N/2− k) + 1]e−βJ(N/2−k)(N/2−k+1), (24)

where Nk =
(
N
k

)
−
(

N
k − 1

)
follows from the above

argument. We assume
(
N
−1

)
= 0.

The reduced density matrix for two qubits is given by

ρ12 =

v 0 0 0
0 w y 0
0 y w 0
0 0 0 v

 (25)

with matrix elements

y =
2〈S2

x + S2
y〉 −N

2N(N − 1)
,

w =
N2 − 4〈S2

z 〉
4N(N − 1)

,

v =
N2 − 2N + 4〈S2

z〉
4N(N − 1)

, (26)

where

〈S2
z 〉 =

N/2∑
k=0

Nk

N−2k∑
m=0

(m−N/2 + k)2

× e−βJ(N/2−k)(N/2−k+1)/Z. (27)

Note that y 6= w in this case.
From equations (16, 26), the concurrence is obtained as

C =
1

2N(N − 1)
×max

{
0, 2|2〈S2

x + S2
y〉 −N | −N2 + 2N − 4〈S2

z 〉
}

=
1

2N(N − 1)
×max

{
0, 2|4〈Sz〉 −N | −N2 + 2N − 4〈S2

z〉
}
, (28)

where we have used the symmetric property 〈S2
x〉 =

〈S2
y〉 = 〈S2

z 〉.
To identify the sign of A ≡ 2|4〈S2

z〉−N | −N2 + 2N −
4〈S2

z 〉 in (28), we consider the case where 4〈S2
z 〉 ≥ N, for

which A = 4〈S2
z 〉 −N2. Since

〈S2
z 〉 ≤

1
3
N

2

(
N

2
+ 1
)
<
N2

4
,

we always have 4〈S2
z〉 −N2 < 0, and there is no pairwise

entanglement. In the opposite case where 4〈S2
z 〉 < N, we

have A = 4N − 12〈S2
z 〉 − N2. For N ≥ 4 this quantity

is always negative, and since for any spin S, (∆Sx)2 +
(∆Sy)2 + (∆Sz)2 ≥ S, we know that for N = 3, we have
(∆Sx)2 + (∆Sy)2 + (∆Sz)2 ≥ 3/2. Due to symmetry we
thus have 〈S2

z 〉 ≥ 1/2, and A is always negative if N ≥ 3.
So we conclude that there is no thermal entanglement

for N ≥ 3 in the isotropic Heisenberg model. The case
of N = 2 is discussed in detail in reference [19] and it is
shown that there is no thermal entanglement for the ferro-
magnetic case. In order to observe pairwise entanglement
in the multiqubit system, we now consider the anisotropic
Heisenberg model.

5.2 Anisotropic Heisenberg model

The anisotropic Heisenberg Hamiltonian is given by

Ha = J
(
S2
x + S2

y +∆S2
z

)
= JS2 + J(∆− 1)S2

z , (29)

where ∆ is the anisotropic parameter. Obviously the
Hamiltonian Ha reduces to HI when ∆ = 1, and Ha yields
the XX model when ∆ = 0.

The concurrence is still given by (28), but the partition
function and the relevant expectation values now become

Z =
N/2∑
k=0

Nk

N−2k∑
m=0

e−βJ(∆−1)(m−N/2+k)2
(30)

×e−βJ(N/2−k)(N/2−k+1),

〈S2
z 〉 =

N/2∑
k=0

Nk

N−2k∑
m=0

(m−N/2 + k)2

×e−βJ(∆−1)(m−N/2+k)2

×e−βJ(N/2−k)(N/2−k+1)/Z, (31)

〈S2
x + S2

y〉 =
N/2∑
k=0

Nk

N−2k∑
m=0

[(N/2− k)(N/2− k + 1)

−(m−N/2 + k)2]

×e−βJ(∆−1)(m−N/2+k)2

×e−βJ(N/2−k)(N/2−k+1)/Z. (32)

This model leads to pairwise entanglement, as shown by
the numerical results presented in Figure 3 as functions of
the reciprocal temperature, x = βJ . ForN = 2 we observe
that the concurrence is symmetric with respect to x = 0,
which is consistent with the result in reference [20]. In
other words, the thermal entanglement appears for both
the antiferromagnetic and ferromagnetic cases. However
for N ≥ 3, the thermal entanglement only exists for the
ferromagnetic case. We observe a critical value of x, after
which the entanglement vanishes. And the critical value
increases as N increases.

Within the above framework we may consider more
general models such as

Hg = JS2 + f(Sz), (33)
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Fig. 3. The concurrence as a function of x = βJ for different
number N in the XX model (∆ = 0): N = 2 (open circle),
N = 5 (crosses), N = 15 (solid line), and N = 25 (dashed
line).

where f(Sz) is an arbitrary analytical function of Sz. As
the operator f(Sz) commutes with S2, similar analyti-
cal results for the concurrence can be obtained and the
thermal entanglement can be generated for special choices
of f(Sz).

6 EPR-correlated ensembles

Finally we consider two EPR-correlated ensembles. This
state is not invariant under any permutation of particles,
but only under these permutations that exchange particles
within each ensemble, and it is furthermore characterized
by the correlations between the samples 1 and 2:

(J1x − J2x)|Ψ〉 = 0, (34)
(J1y + J2y)|Ψ〉 = 0. (35)

A state that obeys equations (34, 35) can in principle be
obtained by QND detection of the observables J1x − J2x

and J1y + J2y [10,11]. Equivalently the above equations
can be written as

(J1+ − J2−)|Ψ〉 = 0, (36)
(J1− − J2+)|Ψ〉 = 0. (37)

It is easy to check that a solution of the above equation is
the EPR-correlated state

|Ψ〉 =
1√
N + 1

N∑
n=0

|n〉N ⊗ |n〉N (38)

and it also satisfies (J1z − J2z)|Ψ〉 = 0. The entanglement
of formation of |Ψ〉 is easily obtained as E = log2(N + 1).

Now we consider the entanglement of two qubits, which
belong to different ensembles. we first identify the two-
qubit reduced density matrix:

ρ12 =

v+ 0 0 u∗

0 w 0 0
0 0 w 0
u 0 0 v−

 (39)

in the basis {|00〉, |01〉, |10〉, |11〉}, which can be repre-
sented by

v± =
1
4

(1± 2〈σ1z〉+ 〈σ1zσ2z〉) ,

w =
1
4

(1− 〈σ1zσ2z〉) =
1
4
− 〈J1zJ2z〉

N2
,

u =
1
4

(〈σ1xσ2x〉 − 〈σ1yσ2y〉+ i2〈σ1xσ2y〉)

=
〈J1+J2+〉

N2
· (40)

The concurrence is given by

C = 2 max{0, |u| − w}

= 2 max
{

0,
〈J1+J2+〉+ 〈J1zJ2z〉

N2
− 1

4

}
· (41)

One simple observation is that the concurrence is inde-
pendent on 〈σ1z〉. The expectation values of J1+J2+ and
J1zJ2z are obtained as

〈J1+J2+〉 =
1

N + 1

N−1∑
n=0

(n+ 1)(N − n)

〈J1zJ2z〉 =
1

N + 1

N∑
n=0

(n−N/2)2. (42)

Finally we find that C = 1/N .

7 Conclusions

The purpose of this paper has been to investigate to
which extent multi-particle entanglement implies pairwise
entanglement within the sample. We showed that the two-
particle density matrix is readily expressed in terms of
expectation values of collective operators in the case of
symmetrical states of the many-particle system, and we
provided the value of the concurrence for a number of ex-
amples. These results confirmed and generalized results
obtained, e.g., on the pairwise entanglement in systems
with definite (N = 3, 4) numbers of particles. Most of
our examples of multi-particle entangled states showed
some degree of entanglement of the extracted pair of par-
ticles. From a sample of N/2 pairs, it is thus possible
to distill a single pair with a higher degree of entangle-
ment [13,24,30]. Note, however, that substantial entangle-
ment is lost when the multi-particle state is partitioned in
pairs, and a much better protocol may be envisioned for
the production of a an entangled pair of qubits from the
multi-particle entangled state.

The entanglement of formation and the very issue of
entanglement are highly non-trivial for situations dealing
with more than two particles, and for mixed states of sys-
tems with dimensions higher than 2. Studying and opti-
mizing the two-particle concurrence in systems with many
particles may be a useful way to learn about the more com-
plicated case. A next step could be, for example, to apply
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the method of Section 3, to obtain the state of three parti-
cles, where different non-equivalent kinds of entanglement
may be identified.

This work is supported by the Information Society Technolo-
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